
Basic Exercise on Conditional Logit
Graduate Urban Economics, SUFE

This in-class exercise is intended to give a very basic introduction to simulating a location choice model
where individuals have type 1 extreme value errors (“logit errors”). We then try to back out the chosen
parameters using the Stata cmclogit command. The basic setup we will use is:

1. There are J locations index by j and N individuals indexed by i.

2. Each location has two continuous characteristics, x1j and x2j .

3. In one part of the exercise we will allow for simple heterogeneity by having two types of individuals,
where each type has a different utility function. A share t1 of individuals are type 1 while (1− t1)
are type 2.

Step 0: Create the dataset Create a dataset in Stata with J locations and N individuals, where 0 <
t1 < 1 are type 1. In order to estimate logit models in Stata, there needs to be an observation for each
individual-choice alternative. This means your dataset should have N × J observations: J possible
choices (locations) for each individual. Create a variable i which indexes individuals and a variable j
which indexes locations. Assign each location j values of x1j and x2j , where both variables are simply
draws from a standard normal distribution. You should code J , N , and t1 as Stata global variables so that
you can easily change these. The Stata command rnormal() returns normally distributed values. Lastly,
create the error term ϵij for each individual-choice alternative using the code1:

gen e_ij=-ln(-ln(uniform()))

Step 1: Simplest conditional logit model Estimate a basic model with no heterogeneity and a single
continuous variable using the utility function: Vij = b1 ∗ x1j + ϵij . To do this, calculate Vij for each
individual-alternative pair. Individuals then choose the single alternative with the largest utility Vij . De-
fine a variable choice as a binary equal to one if the individual chose the alternative and zero otherwise;
your dataset should only have N observations where choice equals one. You can then estimate this con-
ditional logit model using the following two commands:

cmset i j
cmclogit choice x1j, noconst

Step 2: Varying the strength of idiosyncratic preferences A common way to vary the strength of
idiosyncratic preferences is to multiply ϵij by a constant, σ > 0. This is equivalent to changing the
scale parameter of the ϵij distribution (see footnote on Gumbel). Specifically, let the utility function be:
Vij = b1 ∗ x1j + σϵij . When utility takes this form, then the resulting logit probabilities are:

Pj =
exp( b1

σ
∗ x1j)

J∑
k=1

exp(
b1
σ

∗ x1k)
(1)

1The extreme value type 1 distribution, or Gumbel, has CDF: Pr(X < x) = exp(−exp(x−µ
σ )). Since most computer

programs can easily generate draws from a uniform distribution, a common trick is to invert the CDF and apply to uniform
draws—the Pr(X < x)—to generate draws from a given distribution. Inverting this CDF gives: ln(−ln(Pr(X < x))) =
x−µ
σ . The µ parameter has no effect on anything—adding a constant to the utility of all choices has no effect on the maximum—

and thus we normalize to 0. The σ parameter is known as the scale parameter and determines the weight of the idiosyncratic
part of utility, ϵij , versus the part affected by the covariates. Here we assume σ = 1.



Code σ as a global variable and then try simulating and estimating the basic model from step 1 using
different values of σ. How does σ affect the choice shares? What will be choice shares as σ → ∞?

Step 3: Tricks: Berry (RAND, 1994) shows that when there are only alternative-specific variables (only
j variables), then we can simply take logs and estimate the model with OLS. Try the following, where
uniq j is an indicator for a unique observation of alternative j:

gen ln_cshare=ln(choice_share) //converges to cmclogit coefs as N->infinity
reg ln_cshare x1j if uniq_j

Another trick is from Guimaraes, Figureres, and Wood (ReStat, 2004), who show that when there are
only alternative-specific variables and we have the counts of agents making choices, then we can estimate
the model directly with a poisson model. This can be much faster. Try:

poisson choice_count x1j if uniq_j

Step 4: Heterogeneity Now try simulating and estimating a model with heterogeneity. Specifically, let
the utility function be: V t

ij = bt1 ∗ x1j + bt2 ∗ x2j + ϵij , where t ∈ 1, 2. This model can be estimating
using the same strategy as above, but with interaction variables for one of the types. This alone is not that
interesting, but with a bit more work we could use this setup to simulate a simple sorting model with two
types.

Step 5: Simple equilibrium sorting model In the DO file “logit sim cmap.DO” I show how to simulate a
sorting model with two types and two characteristics (same heterogeneity as in step 4). The key difference
is that we now solve for equilibrium prices and thus can try a hedonic regression to estimate MWTP. To
do so, we first need a supply of housing for every location, Sj , which we will assume is exogenous (does
not depend on prices—completely inelastic supply). We can then define the equilibrium prices, pj , as the
set of prices such that for every location j ∈ J , Pj(pj) = Sj , where Pj is the probability (share) of all
consumers choosing location j. This involves solving J non-linear equations—a difficult problem—but
luckily Bayer et al. gives us a simple contraction mapping that can do this for us. We can iterate through
successive guesses for prices using:

ptj = pt−1
j + ln

(
Prj(p

t−1
j )

Sj

)

Please go through my code and see if you can understand how it works. Some questions to think about:

1. Sometimes the equilibrium price of a given location will be negative, pj < 0. Can negative prices
be an equilibrium in this model?

2. Does the hedonic regression yield the average MWTP? Does it matter whether x1j and x2j are
continuous versus discrete?

3. Do we need an instrument for prices in the logit regression?
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